New sequences of non-free rational points
نویسندگان
چکیده
We exhibit some new infinite families of rational values τ, them squares rationals, for which the group or even semigroup generated by matrices (1101) and (10τ1) is not free.
منابع مشابه
On Uniform Bounds for Rational Points on Non-rational Curves
We show that the number of rational points of height ≤ H on a non-rational plane curve of degree d is Od(H 2/d−δ), for some δ > 0 depending only on d. The implicit constant depends only on d. This improves a result of Heath-Brown, who proved the bound O (H2/d+ ). We also show that one can take δ = 1/450 in the case d = 3.
متن کاملElliptic Divisibility Sequences and Undecidable Problems about Rational Points
Julia Robinson has given a first-order definition of the rational integers Z in the rational numbers Q by a formula (∀∃∀∃)(F = 0) where the ∀-quantifiers run over a total of 8 variables, and where F is a polynomial. This implies that the Σ5-theory of Q is undecidable. We prove that a conjecture about elliptic curves provides an interpretation of Z in Q with quantifier complexity ∀∃, involving o...
متن کاملRational Points
is known to have only finitely many triples of positive integer solutions x, y, z for a given n > 2 (Faltings, 1983). In Chapter 11, special situations are described in which more precise information is accessible. For example, if x is in S, then n is bounded by a computable number C5 = Cb(pv ..., p8). From these examples, it should be clear that the book is a mine of information for workers in...
متن کاملThe density of rational points on non-singular hypersurfaces, I
For any n > 3, let F ∈ Z[X0, . . . , Xn] be a form of degree d > 5 that defines a non-singular hypersurface X ⊂ P. The main result in this paper is a proof of the fact that the number N(F ;B) of Q-rational points on X which have height at most B satisfies N(F ;B) = Od,ε,n(B ), for any ε > 0. The implied constant in this estimate depends at most upon d, ε and n. New estimates are also obtained f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Comptes Rendus Mathematique
سال: 2021
ISSN: ['1631-073X', '1778-3569']
DOI: https://doi.org/10.5802/crmath.230